

Moscow | 9-11 November 2016

JODI Gas Questionnaire and JODI Gas Manual

Prepared by: Alex Blackburn, UNSD

www.jodidata.org

Outline

- Why a JODI Gas Manual?
- Preparation process
- Structure and content of the manual – JODI Gas questionnaire
- Data measurement units
- What's next?

Why a JODI Gas Manual?

The JODI Gas Manual was prepared to provide:

- Guidance on the reporting of the JODI Gas Questionnaire
- Reference for concepts and definitions
- Examples of data collection validation methods
- Examples of country practices in the collection of JODI Gas data

It is meant to be of use to both compilers and users of monthly gas data

Preparation Process

- The JODI Gas Manual was drafted by UNSD in close cooperation with JODI partner organizations
- It is the result of a number of technical discussions and rounds of consultation with JODI organizations
- The manual was published in 2013

BETTER DATA BETTER DECISIONS

Structure of the Manual

- 1. Introduction
- 2. The questionnaire
- 3. What is Natural Gas?
- 4. Flow Definitions
- 5. Measurement Units
- 6. Data Quality
- 7. Data Collection/Compilation
- 8. Examples of country practices
- 9. JODI Gas Database

Annexes

Chapter 1

Background on the need for a manual

- Natural gas to become more important in the future as a "clean", plentiful and dynamic fuel
- Recent increase in trade (LNG), and price volatility
- To ensure consistent reporting by data providers
- To ensure clear understanding of data by users
 A JODI Gas manual is needed because better JODI Gas data are needed

Chapter 2: The Questionnaire

		ountry			
	Month				
	Year				
		Natural Gas million m ³ (at 15°C, 760 mm hg)	Natural Gas Terajoules	Natural Gas 1000 tonnes	
		A	В	С	
Production					
Receipts from Other Sources					
Imports					
LNG					
Pipeline					
Exports					
LNG					
Pipeline					
Stock Change					
Gross Inland Deliveries (Calculated)		0	0		
Statistical Difference (Calculated)		0	0		
Gross Inland Deliveries (Observed)					
of which: Electricity and Heat Generation					
Closing stocks					

Mass to volume conversion factor of LNG (if you have a specific figure)

m³/tonne	LNG
Conversion factor	

Chapter 2: The Questionnaire

- To improve comparability, the manual made modifications to the previous questionnaire
- New line for "Receipts from other sources" explicitly includes **blended** biogas and manufactured gases
- "Power Generation" now "Electricity and heat generation"
- Removed "of which: own-use and losses"
- "Statistical difference" now calculated
- Tons are now a separate column (only for LNG trade)
- Brief "definitions" sheet: short reminders of key points

Chapter 3: What is Natural Gas?

- Definition is consistent with UNSD's International Recommendation on Energy Statistics (IRES)
- "... mixture of gaseous hydrocarbons, primarily methane, but generally also including ethane, propane and higher hydrocarbons... and some non-combustible gases"
- Includes shale gas, coal seam gas and colliery gas / when distributed may contain blended biogas or manufactured gases
- NGLs (natural gas liquids) are excluded

- Definitions are consistent with IRES
- Ensures that JODI data are compatible with other energy data and other economic statistics standards (e.g. IMTS)
- Definitions also list specific inclusions or exclusions to help data providers and users

Production:

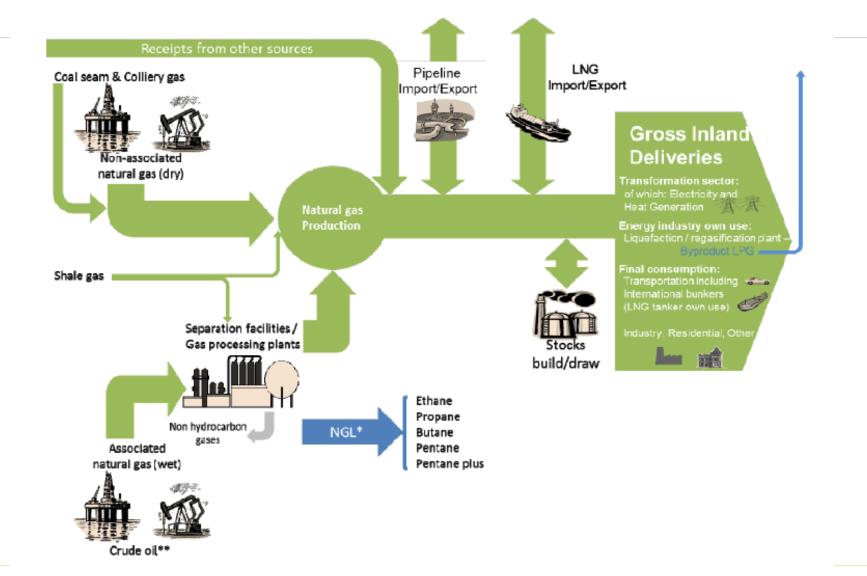
- Refers to dry, marketable production within national boundaries including offshore
- Quantities reinjected, flared and vented in situ are excluded
- NGLs and impurities such as Sulphur are excluded

Receipts from other Sources:

 Accounts for gases accounted for elsewhere blended into natural gas; excludes their use when combusted purely

Import and Exports:

- Includes both pipeline and LNG tanker trade
- Goods-in-transit *should* be excluded (difficult to determine in complex pipeline systems)


Stocks:

Cushion gas and gas reserves (unextracted gas) should be excluded

Chapter 4: Flow Diagram

- Though definitions exists, exceptions may still arise
- This may cause differences in reporting, but should be clearly indicated in country notes
- Examples:
 - inclusion of natural gas in transit via pipeline in trade
 - "Receipts from other sources" included with production
 - only main activity producers (or electricity-only plants) included in deliveries to "Electricity and heat generation"

Metadata are important

Chapter 5: Measurement Units

- Units to be used in reporting
 - Volumetric units: Million m³, standard conditions
 - Energy units: TJ, gross basis
 - Mass units: tons [LNG trade only]
- Conversion between energy units and volumetric/mass units may depend on flow
- Calorific value needed if only one unit is reported (but countries are asked to report in both main units)

Chapter 6: Data Quality

- Data quality covers several dimensions
- Chapter 6 focuses on checks that can be done to assess accuracy of the data
 - balance check
 - stocks check
 - calorific value check
 - time series check
- Common reporting errors
 - shows typical deviations from standard definitions, and common misconceptions

Ultimately, data quality is difficult to measure, but it's important to try!

Chapter 7: Data Collection/Compilation

- Guidance on data sources and data collection methods (production data from extraction companies, trade data from customs offices, etc)
- Discussion of treatment of missing data and confidential data
- Brief discussion of benchmarking, the reconciling of monthly and annual data (publishing time lags make this less relevant for JODI)

Chapter 8: Country Practices

- Representative cross-section Azerbaijan
 - Brazil
 - Thailand
 - United Kingdom
- Not an explicit compilation guide, should not be seen as best practices; more an opportunity to learn from each other

Chapter 9: The JODI World Database

- Shows the flow of data from:
 - Company> Government> Partner Organization>
 IEF> JODI Gas World Database>User
- Lists the contents and features of the world database
- Describes the data quality colour codes to be used

- Flow diagrams
- Standard units and conversion factors (for standard to normal conditions, energy to volume, volume to mass etc...)

- With agreed-upon definitions, the reporting burden on countries is reduced and the transparency of the JODI Gas data should increase
- Better, more transparent data was a prerequisite to launching the JODI Gas world database at the IEF Ministerial in Moscow, May 2014
- More trainings, continuous improvement

Data quality improvement should never stop!

Annex 1: Conversion between Standard and Normal Conditions

Table A2.5: Conversion equivalents between Standard cubic metres (m³) and Normal cubic metres (m³)

	То	Standard m ³	Normal m ³
From:			
Standard m ³		1	0.948
Normal m ³		1.055	1

Note: Standard cubic metre (m³) refers to standard measurement conditions at 15°C and 760 mm Hg. Normal cubic metre (m³) refers to normal measurement conditions at 0°C and 760 mm Hg.

Annex 2: Conversion between LNG and Natural Gas Units

Table A2.6: Conversion equivalents between LNG and Natural Gas units

To:	Metric Tons of LNG	m ³ of LNG	Standard m ³ (a)		
From					
Metric Tons of LNG	1	2.2	1360		
m ³ of LNG	0.45	1	<mark>6</mark> 15		
Standard m ³	7.35*10 ⁻⁴	1.626*10 ⁻³	1		
(a) 4 Ober dead m ³ 40 MI					

(a) 1 Standard m³ = 40 MJ.

www.jodidata.org

